This example demonstrates the usage of sliders in 'curve3D' objects and vector fields. Definition curve: \(c(t):=\begin{pmatrix} c_1\cos(t)\\c_2\sin(t)\\c_3t-1 \end{pmatrix}\). The parameters \(c_1,c_2,c_3\) are realized as slider objects.
var TC1 = (t) => parc1.Value() * Math.cos(t);
var TC2 = (t) => parc2.Value() * Math.sin(t);
var TC3 = (t) => parc3.Value() * t - 1;
The vector field is defined as \(V(u,v,w)=\begin{pmatrix} \dfrac{-v}{u^2 + v^2 + 0.0001} \sin(\alpha) \\ \dfrac{u}{u^2 + v^2 + 0.0001} \cos(\alpha)\\ 0 \end{pmatrix} \)
Implented was this using functions:
var TF1 = (u, v, w) => -v * Math.sin(vecs.Value()) / (u * u + v * v + 0.0001);
var TF2 = (u, v, w) => u * Math.cos(vecs.Value()) / (u * u + v * v + 0.0001);
var TF3 = (u, v, w) => 0;